The 5 - Step Method for Predicting Acid-Base Reactions

Example: Spilled oven cleaner containing aqueous sodium hydroxide is neutralized with vinegar. Predict the acid base equilibria.

- 1. List all major entities present when the reactants are placed in water $\frac{58}{OH}$ CH_3COOH H_2O
- 2. Identify all possible acids and bases (using table) and cross out any metal ions. (They are spectators)
- 3. Identify the strongest acids and the strongest base. (Use table)
- 4. Write the strongest acid and strongest base as reactants. Transfer an H+ from the acid to the base and predict products.

 CH₃COOH (18) + OH (18) CH₃COO (10) + H₂O (1)

5. Predict the position of the equilibria. Use table. If acid is above base then products are favoured

* Remember to include states and charges!

Examples

Predict the reaction of potassium hydroxide and boric acid. H₂BO₂

and boric acid.
$$H_{3}BO_{3}$$
 $H_{3}BO_{3}$
 $H_{3}BO_{3}$
 $H_{2}O$
 $H_{3}BO_{3}$
 $H_{2}BO_{3}$
 $H_{2}BO_{3}$
 $H_{3}BO_{3}$
 $H_{4}O$
 $H_{5}O$
 $H_{$

Predict the <u>quantitative</u> reaction of ammonia and nitric acid.

ammonia and nitric acid.
$$HND_3 + H_2O = 7H_3O^2 + NO_3^2$$

SA H_3O^4
 NH_3
 H_3O^4
 NO_3
 $H_2O_{(1)}$
 $H_3O_{(20)}$
 $H_3O_{(20)}$
 $H_3O_{(20)}$
 $H_3O_{(20)}$