## Molecules

Atoms may share electrons... The atoms held together by sharing electrons are joined by a covalent bond.

This occurs when the elements are non-metals.

• Nonmetals hold on to their valence electrons.

- They can't give away electrons to bond.
- But still want noble gas configuration.
- Get it by <u>sharing valence electrons</u> with each other = <u>covalent bonding</u>
- By sharing, <u>both atoms</u> get to

count the electrons toward a noble gas configuration.

> A molecule is a neutral group of atoms joined together by covalent bonds.

> A diatomic molecule is a molecule consisting of two of the same atom such as O2.

f two of the same atom.  $H_2$ ,  $F_2$ ,  $B_{r_2}$ ,  $T_2$ ,  $C_1$ ,  $N_2$ ,  $O_2$ ,  $S_8$   $P_4$ 

Molecular Compounds

A compound composed of molecules is called a molecular compound.

Molecular compounds have lower melting and boiling poin

A **molecular formula** is the chemical formula of a molecular compound.

It shows how many atoms of each element a molecule contains

Ways to communicate molecular formula:

## Octet rule

Atoms will share electrons to have number of valence electrons of a noble gas

# **Single Covalent Bonds**

One valence electron is shared from each atom.

**Example: Water** 





The Oxygen atom has two pairs of unshared electrons called "lone pairs" and two bonding electrons that become a shared pair of electrons with hydrogen.

### **Double/Triple Bonds**

Sometimes atoms share <u>more</u>
 <u>than one pair</u> of valence electrons.

- A double bond is when atoms share two pairs of electrons (4 total)
- A triple bond is when atoms share three pairs of electrons (6 total)



Carbon and oxygen share two sets of electrons each, or two double bonds.

A bond can also be shown by lines drawn between the atoms:

:Ö=C=Ö: This is the "structural formula"

Lewis dot diagrams for molecules

-pair up all unpaired electrons to achieve noble gas configuration.

ex/ OF<sub>2</sub> CCI<sub>4</sub>

$$\begin{array}{ccc}
& & & & & & & \\
& \times & \times & & & & \\
& \times & \times & & \\
& \times & \times & & & \\$$

: (1:

Octet exceptions
do not have 8 valence for stability.
ex/ H<sub>2</sub> and BH<sub>3</sub>

## **VSEPR**

Valence electrons include lone pairs and bonding electrons.

Electron pairs will arrange themselves as far apart as possible to minimize electron repulsions.

#### Molecular Shapes

- word view officeanne live com

| Molecular Formula | Lewis Dot diagram | Structural Diagram | Shape                 |
|-------------------|-------------------|--------------------|-----------------------|
| CH4               | H; C; ; H         | H-5-H              | tetrahedral           |
| NH3               | H, V, H           | H M-H              | trigonal<br>pyranidal |
| H <sub>2</sub> D  | Hx. O:            | H:.                | bent                  |
| BH3               | HY BYH            | H-B-H              | trigonal<br>planar    |
| Cl2<br>CO2        | : CI x CIX        | :CI-CI:            | lihear                |

: O= C= 0: