Chapter 14 The Behavior of Gases

Section 14-1 Vocabulary

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

Gases are easily <u>1</u> , or squeezed into a smaller volume	1
because of the <u>2</u> between particles in a gas. The four variables	2
used to describe a gas are pressure, (<i>P</i>), 3 (<i>V</i>), 4 (<i>T</i>),	3
and number of 5 (<i>n</i>).	4
You can use <u>6</u> theory to predict and explain how gases	5
will respond to a change in conditions. Doubling the amount of	6
gas in a rigid container $\underline{7}$ the pressure. You can raise the	7
pressure exerted by a contained gas by <u>8</u> its volume. As the	8
temperature of an enclosed gas decreases, the pressure <u>9</u> .	9

1.4 variables	used to de	scribe a gas 1)	,
2)	3)	4)	

2. Gas Pressure results from

Collisions =		Pressure
--------------	--	----------

3. Temperature is a measure of

4. What can happen if too much gas is pumped into a sealed, rigid container?

Units used to describe gas samples:

Volume	Temperature	Pressur <u>e</u>
liter (L)	Kelvin ONLY	Atmosphere (atm)
milliliter (mL)		Kilopascale (kPa)
		Torr (torr)
1000 mL = 1L	K = °C + 273	mm of mercury(mmHg)
		1 atm = 101.3 kPa
		1 atm = 760 mmHg
		1 atm = 760 torr
5. Complete question	s 1 and 2 on Pg. 387.	

14.2 The Gas Laws

Vocabulary

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

The pressure and volume of a fixed mass of gas are <u>1</u>	1
related. If one decreases, the other <u>2</u> . This relationship is	2
known as <u>3</u> law. The volume of a fixed <u>4</u> of a gas is	3
directly proportional to its <u>5</u> temperature. This relationship	4
is known as <u>6</u> law. <u>7</u> law states that the pressure of a	5
gas is8 proportional to the Kelvin temperature if the	6
volume remains constant.	7
These three separate gas laws can be written as a single	8
expression called the $_9$ gas law. It can be used in situations	9
in which only the <u>10</u> of gas is constant.	10

1. BOYLE'S LAW -

How are pressure (P) and volume (V) related? (Circle one) directly inversely

BOYLE'S LAW PROBLEMS

- 1. A gas occupies 12.3 liters at a pressure of 40.0 mmHg. What is the volume when the pressure is increased to 60.0 mmHg?
- 2. If a gas at 25.0 °C occupies 3.60 liters at a pressure of 1.00 atm, what will be its volume at a pressure of 2.50 atm?
- 3. A gas occupies 1.56 L at 760.0 torr. What will be the volume of this gas if the pressure becomes 1520 torr?
- 4. A gas occupies 11.2 liters at 0.860 atm. What is the pressure if the volume becomes 15.0 L?
- 5. 500.0 mL of a gas is collected at 745.0 mmHg. What will the volume be at 760.0 mmHg?

2. CHABLES'S LAW -

How are temperature (T) and volume (V) related? (Circle one) directly inversely

CHARLES'S LAW PROBLEMS

- 1. Convert 33.0 °C to Kelvin
- 2. Calculate the final temperature when $\overline{2.00}$ L at 293K is compressed to 1.00 L.
- 3. 600.0 mL of air is at 293K. What is the volume at 333K?
- 4. A gas occupies 900.0 mL at a temperature of 27.0 °C. What is the volume at 132.0 °C?
- 5. What change in volume results if 60.0 mL of gas is cooled from 33.0 °C to 5.00 °C?

3. GAY-LUSSAG'S LAW -

How are temperature (T) and pressure (P) related? (Circle one) directly inversely

Complete problems 11 and 12 from Pg. 423

4. **GOMBINED GAS LAW** – Combination of Boyle's Law, Charles' Law, and Gay-

Lussac's Law

COMBINED GAS LAWS PROBLEMS

1. A gas occupies 2.0 L at 2.5 atm and 25°C. What is it's volume if the temperature is increased to 33°C and the pressure is decreased to 1.5 atm?

2. A gas occupies 4.5 L at 1.3 atm and 35°C. What is the final temperature if the final volume of the gas is 3.2 L with a pressure of 1.5 atm?

3.

Complete the following chart:

	P ₁	V1	T1	P ₂	V ₂	T ₂
1	1.50 <u>atm</u>	3.00 L	20.0 °C	2.50 <u>atm</u> .		30.0 °C
2	720. <u>torr</u>	256 mL		760. <u>torr</u>	250.0 mL	50.0 °C
3	600. mmHg	2.50 L	22.0 °C	760. mmHg	1.80 L	
4		750. mL	273 K	2.00 atm	500. mL	298 K
5	850. mmHg	1.50 L	15.0 °C		2.50 L	30.0 °C