Chapter un The Behavior of Gases

Section 14-1 Vocabulary

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

Gases are easily $\quad \mathbf{1}$, or squeezed into a smaller volume because of the \qquad 2 between particles in a gas. The four variables used to describe a gas are pressure, $(P), \ldots 3(V), \underline{4}(T)$, and number of \qquad 5 (n).

You can use $\quad 6$ theory to predict and explain how gases will respond to a change in conditions. Doubling the amount of gas in a rigid container \qquad 7 the pressure. You can raise the pressure exerted by a contained gas by $\mathbf{8}$ its volume. As the temperature of an enclosed gas decreases, the pressure \qquad 9 —.

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. 4 variables used to describe a gas 1) \qquad
2)
3)
4) ,
\qquad

2. Gas Pressure results from
\qquad Collisions = \qquad Pressure
3. Temperature is a measure of
\qquad Energy = \qquad Temperature
4. What can happen if too much gas is pumped into a sealed,rigid container?

Units used to describe gas samples:

Volume	Temperature	Pressure
liter (L)	Kelvin ONLY	Atmosphere (atm)
milliliter (mL)		Kilopascale (kPa) $1000 \mathrm{~mL}=1 \mathrm{~L}$
	$\mathrm{~K}={ }^{\circ} \mathrm{C}+273$	Torr (torr) mm of mercury (mmHg)
		$1 \mathrm{~atm}=101.3 \mathrm{kPa}$
		$1 \mathrm{~atm}=760 \mathrm{mmHg}$
	$1 \mathrm{~atm}=760 \mathrm{torr}$	

5. Complete questions 1 and 2 on Pg. 387.

14.2 The Gas Laws

Vocabulary

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

The pressure and volume of a fixed mass of gas are $\quad 1$ related. If one decreases, the other \qquad 2 . This relationship is known as $\quad \mathbf{3}$ law. The volume of a fixed $\quad 4$ of a gas is directly proportional to its \qquad 5 temperature. This relationship is known as $\quad 6 \quad$ law. 7 law states that the pressure of a gas is $\quad \mathbf{8}$ proportional to the Kelvin temperature if the volume remains constant.

These three separate gas laws can be written as a single expression called the $\quad \mathbf{9}$ gas law. It can be used in situations in which only the $\quad 10$ of gas is constant.

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

1.

BOYLE 8 LAW -

How are pressure (P) and volume (V) related? (Circle one)
directly
inversely

\square

BOYLE'S LAW PROBLEMS

1. A gas occupies 12.3 liters at a pressure of 40.0 mmHg . What is the volume when the pressure is increased to 60.0 mmHg ?
2. If a gas at $25.0^{\circ} \mathrm{C}$ occupies 3.60 liters at a pressure of 1.00 atm , what will be its volume at a pressure of 2.50 atm ?
3. A gas occupies 1.56 L at 760.0 torr. What will be the volume of this gas if the pressure becomes 1520 torr?
4. A gas occupies 11.2 liters at 0.860 atm . What is the pressure if the volume becomes 15.0 L ?
5. 500.0 mL of a gas is collected at 745.0 mmHg . What will the volume be at 760.0 mmHg ?

2. CHABLES® LAW -

\square

CHARLES'S LAW PROBLEMS

1. Convert $33.0^{\circ} \mathrm{C}$ to Kelvin
2. Calculate the final temperature when 2.00 L at 293 K is compressed to 1.00 L .
3. 600.0 mL of air is at 293 K . What is the volume at 333 K ?
4. A gas occupies 900.0 mL at a temperature of $27.0^{\circ} \mathrm{C}$. What is the volume at $132.0^{\circ} \mathrm{C}$?
5. What change in volume results if 60.0 mL of gas is cooled from $33.0^{\circ} \mathrm{C}$ to 5.00 ${ }^{\circ} \mathrm{C}$?

3. GAF- LUSEAGSLAW-

How are temperature (T) and pressure (P) related? (Circle one) directly inversely

Complete problems 11 and 12 from Pg. 423

4. COMBINED CAS LAN - Combination of Boyle's Law, Charles' Law, and Gay-

Lussac's Law

COMBINED GAS LAWS PROBLEMS

1. A gas occupies 2.0 L at 2.5 atm and $25^{\circ} \mathrm{C}$. What is it's volume if the temperature is increased to $33{ }^{\circ} \mathrm{C}$ and the pressure is decreased to 1.5 atm ?
2. A gas occupies 4.5 L at 1.3 atm and $35^{\circ} \mathrm{C}$. What is the final temperature if the final volume of the gas is 3.2 L with a pressure of 1.5 atm ?
3.

Complete the following chart:

	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{V}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{V}_{\mathbf{2}}$	$\mathbf{T}_{\mathbf{2}}$
$\mathbf{1}$	1.50 atm	3.00 L	$20.0^{\circ} \mathrm{C}$	2.50 atm		$30.0^{\circ} \mathrm{C}$
$\mathbf{2}$	$720 . \mathrm{tore}$	256 mL		$760 . \mathrm{torn}$	250.0 mL	$50.0^{\circ} \mathrm{C}$
$\mathbf{3}$	$600 . \mathrm{mmHg}$	2.50 L	$22.0^{\circ} \mathrm{C}$	$760 . \mathrm{mmHg}$	1.80 L	
$\mathbf{4}$		$750 . \mathrm{mL}$	273 K	2.00 atm	$500 . \mathrm{mL}$	298 K
$\mathbf{5}$	$850 . \mathrm{mmHg}$	1.50 L	$15.0^{\circ} \mathrm{C}$		2.50 L	$30.0{ }^{\circ} \mathrm{C}$

