In a \qquad of gases, each gas exerts a certain \qquad as if it were alone. The pressure of each one of these gases is called the \qquad pressure. The total pressure of a mixture of gases is the \qquad of all of the \qquad
\qquad .

Example: What is the total pressure of a mixture of gases made up of $\mathrm{CO}_{2}, \mathrm{O}_{2}$, and H_{2} if the partial pressures are $22.3 \mathrm{kPa}, 44.7 \mathrm{kPa}$, and 112 kPa , respectively? \qquad

1. A tank contains a mixture of O_{2} gas and H_{2} gas. If the pressure of O_{2} in the tank is 1.4 atm and the total pressure in the tank is 6.2 atm , what is the partial pressure of H_{2} gas in the tank?
2. The pressure of a mixture of nitrogen, carbon dioxide, and oxygen is 150 kPa . What is the partial pressure of oxygen, if the partial pressures of the nitrogen and carbon dioxide are $100 . \mathrm{kPa}$ and 24 kPa , respectively?
3. A 3.0 liter container contains 1.0 liter of N_{2} gas and 2.0 liters of H_{2} gas. If the total pressure of the container is 3.0 atm , what is the partial pressure of each gas in the container (think about the volumes of each gas as they relate to the total volume of the container, then apply this to pressure).
