## Section 18.2c- Keg

Date:\_\_\_

Objectives:

•predict the favourability of reactant or products in a reversible reaction, on the basis of the magnitude of the equilibrium constant.

write equilibrium constant expressions

Notes There is a mathematical relationship that
Shows the relationship between reactants and products.
This is called the equilibrium constant Leg.

It provides a constant value for a chemical system over a range of concentrations. For the general reaction...

The equilibrium constant is a ratio of products concentration to reactant concentration at equilibrium.

Keq is a constant for reaction at a given temp.

When keq > 1- products are favored.

When keq < 1 - <u>Veactants</u> are favored.

The Equilibrium law can only include substances that can vary in concentration. Hence:

- 1. All gases, aqueous ions and mixtures of liquids are included.
- 2. Pure solids: liquids are never included in a keg.

Write the Equilibrium Laws (equilibrium expression) for the following:

A) 
$$PCl_5(g) \longleftrightarrow PCl_3(g) + Cl_2(g)$$

B) 
$$Cl_2O_7(g) + 8H_2(g) \leftrightarrow 2HCl(g) + 7H2O(g)$$

C) 
$$CaCO_3(s) \longleftrightarrow CaO(s) + CO_2(g)$$

Write the equilibrium laws for each of the following reactions:

1. 
$$N_2(g) + O_2(g) \leftrightarrow 2NO(g)$$

2. 
$$30_2(g) \leftrightarrow 20_3(g)$$

3. 
$$Cu(s) + 2Ag+(aq) \leftrightarrow Cu_2+(aq) + 2Ag(s)$$

4. 
$$4NH_3(g) + 5O_2(g) \leftrightarrow 6H_2O(g) + 4NO(g)$$

Problems:

1. What is the value of Keq for the reaction of hydrogen and bromine gases to form hydrogen bromide gas? The equilibrium concentrations are:

hydrogen gas: 0.0821 mol/L bromine gas: 0.0433 mol/L hydrogen bromide gas: 0.357 mol/L

2. Industries manufacture methanol by the reaction of hydrogen gas and carbon monoxide gas to produce methanol (CH<sub>3</sub>OH). The equilibrium constant is 10.42 at 479 K. What is the concentration of methanol vapour produced if the equilibrium concentrations of hydrogen gas is 0.478 mol/L and carbon monoxide gas is 0.2289 mol/L?

[CULDH] = Keq. [H,] [CO]