14.3 Ideal gases

Vocabulary

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

The ideal gas law permits you to solve for the <u>1</u> of a	1
contained gas when the pressure, volume, and temperature are	2
known. The ideal gas law is described by the formula $\underline{}$	3
where the variable <u>3</u> represents the number of moles of	4
gas and the letter R is the <u>4</u> . R is equal to <u>5</u> .	5
A gas that conforms to the gas laws at all conditions of	6
temperature and pressure is an <u>6</u> gas. No <u>7</u> gas	7
behaves ideally at all temperatures and pressures. Deviations	8
from ideal behavior at high pressures can be explained by the	9
intermolecular <u>8</u> between particles in a gas and the actual	

9 of the particles.

Ideal Gases -

- Gases whose behavior can be predicted by the kinetic molecular theory are called
 _____, or perfect, gases. No gases are truly ideal because no gas totally obeys all
 of the ______.
- An ideal gas is an _____ gas that is _____ and does follow everything perfectly.
- We assume that all gases behave like ______ so there is an ideal gas law.

PV = nRT

What do the variables stand for?

IDEAL GAS LAW PROBLEMS

- 1. How many moles of gas are present in a rigid 0.500 L container under 1.5 atm of pressure and 100.°C?
- 2. What volume will 2.00 moles of nitrogen occupy at 0.80 atm and 20.°C?
- 3. What pressure will be exerted by 4.5 moles of oxygen at 25.0°C and a volume of 0.500 L?
- 4. Calculate how many moles of methane gas (CH₄) are in 4.00 L of the gas at 22°C and 1.10 atm.
- 5. At what temperature will 5.00g of Cl₂ exert a pressure of 1.70 atm at a volume of .750 L? (hint: convert grams to moles)

 How many moles of nitrogen gas will occupy a volume of 347 mL at 6680 torr and 27°C?