Reaction Rates:

Reactions can occur very slowly to very quickly.

Examples:

Slow: dead plants turning into coal

Fast: firecracker, dynamite

Rate:

Amount of reactant changing per unit time.

Collision Theory:

Key Idea: Particles must collide to react.

Only some collisions = reactions...why?

- 1. Particles need the necessary kinetic energy to react. If they are lacking in kinetic energy, they will just bounce apart unchanged.
- 2. Particles need to collide in the proper orientation

Activation Energy:

Minimum energy needed to react.

Collisions must equal or exceed the activation energy to react.

Activated Complex or Transition State

-Unstable arrangement at the peak of the energy barrier lasting about 10-13 seconds

Figure 18.5 Interpreting Graphs

Draw a potential energy diagram for both an endo and exo thermic reaction including labels for the <u>axis</u>, <u>activation energy</u>, <u>products</u>, <u>and reactants</u>. Put a star on the <u>activated complex</u>.

Factors Affecting Collision Rates:

Temperature:

<u>Increase</u> in temperature will increase the rate of reactions

Concentration:

<u>Increasing</u> concentration usually increases the rate of reaction

Particle Size:

Increasing particle size decreases the surface area for a given mass of particle, decreasing the amount of reactant exposed for reaction.

Increase in particle size will decreasing reaction rate.

Catalyst:

A substance that speeds up a reaction, without being consumed itself in the reaction.

Example: enzymes

What happens to the a potential energy diagram if we add a catalyst?

Is this reaction endothermic or exothermic? <u>exothermi</u> _ Indicate on diagram location of delta H.

Is this reaction endothermic or exothermic? The following indicate on diagram identify a,

b and d.