Chemistry 122- Acid Base Unit Chapter 19.2, Water Equilibrium Notes-pH and pOH

Showing how acidic or basic a solution is by expressing the [H ⁺] is cumbersome used.	e, so the more widely
The pH scale is a way to represent the <u>hydrogen</u> jon conc. in solu	tion.
pH-> Power of Hydrogen	
Runs <u>0 - 14</u> . (Numbers can occasionally be negative example: assu	ıming 100% ionization of the
very strong acid HCl, the pH of a 10M solution is -1.00)	
Shortcut **1.0 ×/0 つり pH = 11	
** a pH of 6 is represented by a [H+] of 1.0)	<10 -6
This only works when it is the number is 1.0 x.	
Definition: $PH = -log LH^{+}J$	
•in neutral pH = $\frac{7}{LH+1} = 1 \times 10^{-7}$	
"in acidic solution the pH will be less than 7.	
•pH < -log(10-7) . ACIDIC	
•pH < -log(10-7) ACIDIC •pH < 7 acidic LH+J > 10-7	
oin base, pH > 7 <u>CH+J < 10-7</u> 7-14pH is in	basic range.
Significant Digits	
The number of digits after the decimal in the pH is equal to the number of signif concentration.	icant digits in the
Example: PH of 3.0 means CHT) of 1×10 ⁻³	(one place after decimple means 13 d. for CH+.
[H+] 0 1.72×10 ⁻¹⁰ pH = 9.764 To convert [H+] to a pH value	(3 places after dec. as there are 3 s.d.)
Take the negative log	
$2.7 \times 10^{-11} \text{mol/L} = [H^{+}]$ $-\log \left(2.7 \times 10^{-11}\right] = 10.57$	basic
3.55 x 10-1 mol/L =[H+] - log (3.55 x/0-1] = 0.450	acidic
$1 \times 10^{-8} \text{mol/L} = [H^+]$ $-109 L4 \times 10^{-8}$ = 7.4	basic.

We can go backwards from pH to [H+] as well.

To convert a pH value to [H+] ...

Take the negative inverse log...

ex:
$$pH = 9.63$$

$$10^{-9.63} = 2.3 \times 10^{-10}$$

HOa

pOH is basically the same but conveys the [OH-] instead.

Not greatly used like pH is.

What is the pOH of a solution if the pH is 4? 10

Practice:

Food scientists and dieticians measure pH of foods when they devise recipes and special diets. 1.

Food	[H ⁺] (mol/L)	[OH-] (mol/L)	рН	рОН
Oranges	5.5x10 ⁻³	1.8×10-12	2.26	11.74
Asparagus		_		5.6
Olives		2.0x10 ⁻¹¹		,
Blackberries	·			10.60

- b) Based on pH only, which foods would taste more sour?
- 2. To clean a clogged drain, 26 g of sodium hydroxide is added to water to make 150mL of solution. What are the pH and pOH values for the solution?
- 3. What mass of potassium hydroxide is contained in 500 ml of solution that has a pH of 11.5
- 4. If the concentration of hydrogen ions is $4.2 \times 10^{-3} M$, what is the pH?
- 5. If the concentration of hydrogen ions is $4.4 \times 10^{-7} M$, what is the pH?
- 6. IF the pH of the solution is 10.33, what is the hydrogen ion concentration?
- 7. If the pH of the solution is 4.56, what is the concentration of hydrogen ions?