## Chemistry 12 Worksheet 1 Potential Energy Diagrams

## USE THE POTENTIAL ENERGY DIAGRAM TO ANSWER THE QUESTIONS BELOW:



- 1. Is the overall reaction as shown exothermic or endothermic?
- 2. What is the activation energy for the forward reaction?
- 3. What is the activation energy for the reverse reaction?
- 4. What is the enthalpy change of reaction ( $\Delta H$ ) for the forward reaction?
- 5. What is the  $\Delta \mathbf{H}$  for the reverse reaction?bb
- 6. Is the reverse reaction exothermic or endothermic?
- 7. Which species forms the *activated complex*?
- 8. Which species or set of species has the *highest* potential energy?
- 9. Which do you think would be faster, the forward reaction or the reverse reaction? Explain.
- 10. Show the  $\Delta H$ , the Activation Energy for the *forward* reaction and the Activation Energy for the *reverse* reaction on the graph above.
- 11. State the meaning of Activated Complex.

12. Use the following Potential Energy Diagram to answer the questions below:



Progress of Reaction

| kJ       |
|----------|
| ŀΙ       |
| l\subset |
| kJ       |
|          |
|          |
|          |
|          |
| -        |
|          |
|          |

4. What two requirements must be met before a collision between two reactant particles is effective?1.2.

15. Describe what happens to two reactant particles which collide with *less* energy than the *Activation Energy*.

16. Burning coal (Carbon) is a highly *exothermic* reaction. However coal, in contact with air at room temperature has such a *slow* reaction that it is not noticeable. Explain these two facts with the help of a Potential Energy Diagram.



Progress of Reaction